作者单位
摘要
季华实验室,广东 佛山 528200
在分析了超轻量化大口径碳化硅(SiC)反射镜(轻量化率≥90%)表面去除原理和难点的基础上,为了实现此类型反射镜的快速加工,提出了一种采用有限元分析进行验证的五轴高效超精密铣磨方法。通过对反射镜铣磨过程中产生共振的机理进行分析,解释了共振的原因,利用有限元分析方法进行仿真模拟,验证了加工过程镜面不会被破坏且系统不发生共振,设计环形工装支撑并对口径Ф510 mm、壁厚 4 mm、轻量化率92%的SiC反射镜进行快速铣磨加工。反射镜初始面形峰谷(PV)值为956.1 μm,镜面去除量为1 mm,加工时间仅为48 h,相较于人工研磨研制周期降低了90%。通过检测,反射镜面形PV值为3.5 μm,满足反射镜抛光前面形精度优于4 μm的要求。
铣磨 SiC反射镜 有限元分析 超轻量化 milling and grinding SiC mirror finite element analysis ultra-lightweight 
红外与激光工程
2023, 52(9): 20230270
张鑫 1张乐 1,*宋驰 2,*闫力松 3[ ... ]张斌智 1
作者单位
摘要
1 季华实验室,广东 佛山 528200
2 佛山科学技术学院 机电工程与自动化学院,广东 佛山 528225
3 华中科技大学 光学与电子信息学院,湖北 武汉 430074
随着新能源、特高压需求爆发,以单晶碳化硅为代表的第三代半导体技术近几年得到了飞速发展,大口径单晶碳化硅材料制备已经成为现实,相比于目前已成熟应用的RB-SiC材料,单晶碳化硅不需要通过CVD或PVD改性就可以获得1 nm甚至更优的表面粗糙度,在光学元件领域的应用具有广阔前景,但同时加工难度高是亟待解决的问题。为了解决单晶碳化硅材料在光学加工过程中的粗糙度问题,提出了一种基于PSD评价及熵增理论的伪随机轨迹加工改善粗糙度的方法。相较于传统单一的Ra值评价方法,通过引入PSD曲线丰富了粗糙度评价的维度;利用对熵增理论的分析,从理论上讨论了确定性抛光轨迹和伪随机轨迹对粗糙度尺度下累计误差影响的区别。通过对6 in (1 in=2.54 cm)单晶碳化硅进行多轮抛光实验,结果表明:在相同初始粗糙度情况下,确定性轨迹与伪随机轨迹虽均得到了Ra约1 nm的粗糙度值,但PSD曲线可以明显看出确定性轨迹出现了尖峰,而伪随机轨迹则更为平滑。验证了特定采样区间下的PSD曲线作为粗糙度评价手段的有效性,同时论证了伪随机轨迹相较于确定性轨迹在单晶碳化硅材料抛光上的优势。
单晶碳化硅 伪随机轨迹 粗糙度 monocrystalline silicon carbide pseudo-random tool path roughness 
红外与激光工程
2023, 52(5): 20220838
作者单位
摘要
1 华中科技大学 光学与电子信息学院,湖北 武汉 430074
2 湖南工业大学 轨道交通学院,湖南 株洲 412007
3 中国科学院长春光学精密机械与物理研究所 中国科学院光学系统先进制造技术重点实验室,吉林 长春 130033
4 季华实验室 总装中心,广东 佛山 528200
5 长春理工大学 光电工程学院,吉林 长春 130022
目前,一些大口径光学望远镜主镜的曲率半径已经达到了几十米量级,若单纯利用计算全息实现对镜面进行面形检测,则检测光路长度不低于其曲率半径长度。受场地大小及环境气流扰动等因素的限制,该条件下难以实现对镜面的高精度测量。为了解决大口径长焦距光学镜面的高精度面形检测问题,提出了一种混合补偿干涉检测方法。该混合补偿方法结合了计算全息图和辅助透镜,在有效地缩短检测光路长度的前提下,可以实现对非球面镜面的零位补偿干涉测量。在光路设计中,需要有效地实现混合补偿光路光学设计参数优化以及对CGH衍射级次的分离;同时,检测光路长度应小于非球面反射镜曲率半径大小,以实现缩短检测光路长度的目的。通过对EELT主镜镜面进行仿真检测,结果表明:该方法检测光路长度可缩短至镜面曲率半径长度的1/8以内,设计检测精度优于RMS λ/100 (λ=632.8 nm)。上述仿真结果证明了该方法可以在缩短检测光路长度的情况下实现对待测非球面反射镜的高精度面形检测。
光学检测 干涉测量 混合补偿 计算全息 optical testing interferometry hybrid compensation computer generated hologram 
红外与激光工程
2022, 51(9): 20220384
作者单位
摘要
1 华中科技大学 光学与电子信息学院,湖北 武汉 430074
2 广东省季华实验室,广东 佛山 528200
3 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
4 湖南工业大学 轨道交通学院,湖南 株洲 412007
为了解决大口径平面反射镜高精度检测问题,建立了一种基于全局优化的子孔径拼接检测数学模型,同时提出了一种拼接因子用于重叠区域取值。基于上述方法,结合工程实例,对一口径为120 mm的平面反射镜完成拼接检测,检测中共规划了四个待测子孔径,为了对比文中所述算法与传统最小二乘拟合拼接算法的拼接性能,分别利用两种算法完成了待测平面镜的面形重构。实验结果表明,两种算法所得拼接结果光滑、连续、无“拼痕”,同时分别将两种算法所得拼接结果与全口径检测结果进行了对比分析,从传统拼接算法残差图中可以看到明显的“拼痕”,而加权拼接方法得到的拼接结果光滑、连续,同时其残差图的PV与RMS值分别为0.012λ与0.002λ,小于传统算法残差图的PV与RMS值,验证了算法的可靠性与精度。
光学检测 干涉测量 子孔径拼接 拼接因子 optical testing interferometer subaperture stitching stitching factor 
红外与激光工程
2021, 50(10): 20210520
Author Affiliations
Abstract
Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics, and Physics, Chinese Academy of Sciences, Changchun 130033, China
We use inductively coupled plasma chemical etching technology (PCET) operating at atmospheric pressure to fabricate an optical mirror whose materials are fused silica, reaction bonded SiC, sintered SiC, and Si for the first time, to our best knowledge. This Letter is focused on a primary study of the mirror surface roughness fabricated with a plasma torch on different wafers. The four wafers’ surface roughness after PCET fabrication are Ra 0.053, 0.223, 0.612, and 0.027 μm, respectively (increased 5, 40, 1.07, and 2 times, respectively). The micro-transformation principle of the surface roughness is researched with an Olympus LEXT 450. We analyze the main reasons that underpin the surface roughness increase. The experimental results show that the new technology is valid for fabricating Si-based materials. Consequently, inductively coupled PCET operating at atmospheric pressure shows promise for the future.
Chinese Optics Letters
2015, 13(Suppl): S22205
Author Affiliations
Abstract
1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China
2 Jilin University, Changchun 130025, China
Silicon carbide (SiC) is a wide bandgap semiconductor which exhibits outstanding mechanical, chemical properties, and potential for a wide range of applications. Laser technology is being established as an -indispensable powerful tool to induce structural or morphological modifications on hard brittle materials. SiC (6H-SiC wafer) is irradiated by nanosecond pulsed Nd:YAG laser to evaluate microstructure and mechanical properties of irradiation areas. Raman spectroscopy analysis reveals that irradiations produce homonuclear Si-Si bonds and disordered phase of crystalline SiC. Crystal structure changes are observed as a consequence of laser-induced melting and resolidification. Hardness in the irradiation area exhibits a significant decrease. The formation of silicon film facilitates material removal rate, surface electrical conductivity, and ceramics conjunction.
220.1920 Diamond machining 220.4610 Optical fabrication 
Chinese Optics Letters
2015, 13(s1): S12203
作者单位
摘要
中国科学院长春光学精密机械与物理研究所中国科学院光学系统先进制造技术重点实验室, 吉林 长春 130033
为了实现口径150 mm凸双曲面SiC反射镜的面形检测,分别设计了传统的Hindle球检测、Simpson Hindle式检测和非球面样板法检测。经过检测精度、公差等方面的比较,选取了检测精度高、公差宽松、支撑结构简单的Hindle球检测方案。经过研磨、抛光等加工过程,目前面形精度达到0.023λ(均方根值)。在检测光路的对准和几何量测量方案中,提出采用干涉仪和激光跟踪仪相结合的方法,利用干涉仪对靶标球球面干涉检测对准,分别测量得到干涉仪出射光会聚点和Hindle球心的空间坐标,这两点对应着被检测凸双曲面的两个几何焦点,进一步计算得到被检双曲面的几何参数。误差分析表明,采用这种方法顶点曲率半径R和二次常数K的测量精度分别达到0.053 mm和9.6×10-5。
光学制造 光学检测 凸双曲面 对准 激光跟踪仪 
光学学报
2014, 34(s2): s212005
作者单位
摘要
中国科学院长春光学精密机械与物理研究所,中国科学院光学系统先进制造技术重点实验室, 吉林 长春 130033
固着磨料工艺主要针对某空间相机的高精度平面折反镜而开发,分别从微观结构的仿真计算和人工神经网络两个角度对此工艺加工碳化硅反射镜表面粗糙度进行分析。一方面引入了二维粗糙度的在微观结构仿真概念,在人工神网络方面使用双隐层神经网络对固着磨料工艺的加工结果进行了分析,使得网络的性能大幅提高,收敛结果达到了8.4075×10-5,并对网络性能进行了验证,标准化后的预测集与实验验证集距离偏差为0.2113。完全满足固着磨料工艺对表面粗糙度的预测需求。
光学制造 固着磨料 碳化硅 表面粗糙度 人工神经网络 
光学学报
2014, 34(s1): s122006
李龙响 1,2,*邓伟杰 2张斌智 2白杨 1,2[ ... ]张学军 2
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
为了解决大口径光学元件磁流变高精度加工问题,基于矩阵运算模型,提出了SBB(Subspace Barzilai and Borwein)最小非负二乘与自适应Tikhonov正则化相结合的驻留时间快速求解方法。同时,在一次收敛中采用双去除函数优化螺旋线轨迹下光学元件的加工,保证中心区域与全口径面形精度一致。仿真表明该算法与常用Lawson-Hanson最小非负二乘法相比,计算精度一致且求解效率大幅提高。对Φ600 mm以彗差为主的光学表面模拟加工,峰谷(PV)值和均方根(RMS)值从初始的2.712λ与0.461λ中心区域全局一致收敛到0.306λ和0.0199λ(λ=632.8 nm)。因此,提出的算法能够在有效保证面形收敛精度的同时快速获得稳定可靠的驻留时间分布,为磁流变抛光应用于大口径光学元件提供有力支持。
光学制造 驻留时间 矩阵运算 全局收敛 磁流变抛光 
光学学报
2014, 34(5): 0522001
作者单位
摘要
中国科学院长春光学精密机械与物理研究所光学系统先进制造技术重点实验室, 吉林 长春 130033
大口径凸非球面反射镜的检测是非球面检测中的难题,而零位补偿检测方法是精确检测大口径凸非球面反射镜的有效检测方法之一,但是随着补偿器口径的增大,在补偿器的加工和装调中难免引入误差。文章针对与球面偏差不大的凸非球面反射镜补偿检测,提出了一种用标准球面在线标定补偿器误差的方法,并对一凸非球面补偿检测中的误差进行了标定,使用标定后的补偿器对该凸非球面反射镜进行了补偿检测,并对标定误差进行了分析,标定前补偿器误差方均根值(RMS)为0.097 λ(波长λ=632.8 nm),标定后综合检测误差RMS值小于0.0046 λ,满足该凸非球面反射镜设计精度要求。
测量 凸非球面反射镜检测 误差标定 标准球面 零位补偿 
中国激光
2013, 40(s1): s108004

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!